Pypitato

Pr. OVIDIO REBAUDI

Qulmico
Dith racituat to Cieniav Exacefor Piskas y Nuturahes de Buenar Alfs
Quimich Hogararto Xfrtideipht, E: Gefe do Seccton Le It Der conconso y vatuit

Secrcario de lif Obcitn Qqimicp Municyals

EEederal-Director de ta Tivflaca de
Quinica F Faruacis- Sliemben Moporrurlo det

Importancia Higiénica del Agua -Sus diversas fuentes y Con: diciones de Potabilidad-Aná lisis y Juicios Comparativos.

ASUNCION

EL RGUA

I

Importancia higiénica del Agua

> Toute dismination aportse par thy gienen xet la prophylaxie au nombre des malar, sdies evitables, se chitfrera par une eco-z snomic considerable et servira d'autentu sifitéret de la defénse nationale*
J. Roceakd.

"MAS vale prevenir que tener que remediar", dice con mucho acierto un antiguo adagio, y como la higiene es la medicina preventiva por excelencia, debemos atenernos á ella, acatando sus preceptos, para no tener que buscar después remedios tardíos á los males que acarrea su descuido.

La experiencia demuestra efectivamente que las ciudades que se han preocupado de su higienizacion, poniendo en práctica lo que la ciencia moderna aconseja en tal concepto, han visto disminuir muy sensiblemente su mortalidad y a veces desaparecer por completo enfermedades que se habían hecho endémicas en ellas.

Para convencernos, por otra parte, de la verdad de esta afirmación, basta comparar la dificultad que encuentran actualmente para su propagación las enfermedades infecto-contagiosas, que antes con frecuencia asolaban los pueblos y las ciudades.

Las siguientes cifras, de la mortalidad anual por mil habitantes, demuestran la relación estrecha que existe entre el número de defunciones y el estado higiénico local:

Toulon

La mortalidad en proporción descendente de las ciudades anotadas está en reación directa con el mayor ó menor descuido de los principios de la higiene.

El número de defunciones en Washington era de 30 por mil antes de la realización de sus mejoras higi nicas, después de terminadas, esta cifra ha descendido à 21 por mil.

En Inglaterra la mortalidad media, que era de 35 por mil en 1846, bajó á 20 de 1875 al 1880, y en 1889 alcanzó tan solo a 17.85, debido á las obras de saneamiento que se l'evaron á cabo en todas partes. En varias ciudades no hubo mas que el 9 por mil de defunciones en 1890.

En París, cuya estadística mortuoria arrojaba en 1880 el 25.37 por mil, en 1804 no se registran mas que el 20 , despu's de las continuadas mejoras higiénicas que desde entonces se vienen llevando á cabo.

La Croacia es la que da el máximun de mortalidad en Europa, el 38 por mil anual, y es de las regiones en que menos aplicación se ha hecho de los preceptos de higiene pública.

Esta enorme cifra es sin embargo superada por la ciudad de Salta (Rep. Argentina) en donde nada se ha hecho por la higiene y cuya mortalidad ha alcanzado á 80 por mil en 1899.

Buenos Aires, en cambio, que antes de estar completamente habilitadas sus obras de salubridad tenfa el 32 por mil de defunciones, en 1899 completada su higienización, sólo alcanzaron éstas al 16 por mil (1).

Sin duda la disminución en la mortalidad puede ser en gran parte efecto de la higiene particular, debida al desarrollo de la instrucción que hace que los hombres sepan cuidar mejor de su salud, si no que la higiene particular es difficil de ponerse en práctica cuando no se dispone de agua buena y abundante, de buenos desagues y de faciliđades para la completa eliminación de los desperdicios.

El agua, pues, es uno de los elementos indispensables, 6 mejor dicho, el elemento primordial para la buena higiene pública y privada.

Soy de opinión (decía Petenhofer en el Congreso de higiene celebrado en Viena en 1887) que no sólamente los

[^0]lugares que son visitados de tiempo en tiempo por epidemias, sinó todos los lugares y todos los seres humanos necesitamos agua pura en todo momento, no sólo para beberla, sinó tambien para la limpieza de la casa y del patio. Con agua sucia, sólo se consigue ensuciar la casa. Agua corriente, buena y pura y en cantidad suficiente, en todas las ciudades y en todos los pisos de las casas, es, á mi juicio, mucho más importante que la buena cerveza y el buen vino, aun cuando la cantidad que se beba de esta agua sea pequenisima.

Obsérvase que la experiencia más elemental ha llevado los hombres á elegir los puntos de sus moradas en las proximidades de fuentes de agua buena y en abundancia, y sabemos tambiin que los pueblos de la antiguedad se esmeraban para conseguir en las condiciones debidas la provisión de este precioso elemento, aunque ello les irrogara ingentes sacriticios, al tenerla que traer á veces de enormes distancias. (1)

Si no que, lo que antes se buscaba mas bien como por una especie de instinto, ahora se hace por convicción arraigada, hija de la experiencia y de los modernos estudios de la higiene.

Una buena agua potable bastaba antes con que fuera agradable á la vista, al oifato y al paladar, debiendo á más cocer bien las verduras y formar espuma persistente con el jabón.

Mas actualmente no se consideran suficientes estas condiciones, pues la observación ha demostrado muchas veces, que más de una agua que las posefan habfan sido \sin embargo la causa de contaminaciones funestas.

Fernando Fischer señala así los caracteres que debe poseer una buena agua potable:
1° - Debe ser clara, incolora, inodora.

[^1]2^{3} Sa temperatura en las diferentes estaciones debe variar entre 6° y 12 .

3n-No debe tener seres organizados, que son aqentes de patrefacción, y si se halla materia orgánica, ista debe ser apenas perceptible.

4" No debe tener amonlaco, ni ácido nitroso.
5° - Los nitratos y cloruros no deben pasar de ciextas cifras limites.
$6^{\prime \prime}$ No deben ser duras y sobre todo no deben tener muchas saies de magnesio.

Los tres caracteres primeros son facimente compren sibles. $\mathrm{El} 6^{\circ}$ to es tambien, puesto que una agua que no respendiera á el no cocerfa bien las legumbres, ni haria espuma persistente con el jabón.

Lo que generalmente no se comprende es el atcance del 4°, al prohibir en absoluto la presencia del acido nitroso y del amoniaco. Se pregunta: ¿Que daño puede causar una cantidad tan minima de esas sustancias, que aun centuplicándola no comunicarfa al agua sabor, ni olor alguno:

Efectivamente, gramos 0.005 de ácido nitroso en 100 litros de agua, bastan para que esta sea decharada mata, y sin embargo puede tomarse, sin apercibirio siquiera, una agua que le contenga en mucha mayor proporción.

Igual cosa puede decirse con respecto al amoniaco.
No es pues la presencia de estas sustancias en tan pequeña cantidad la que debe temerse, sinó las caueas que la determinan.

Voy f explicarme:

La materia orgánica azoada sufre, en virtud de ciertos fermentos organizados (micrococcus punctiforme, baccillum nitrosum, baccillum nitricum, proteus vulgaris y sus congineres, cte.) tanto en el seno de la tierra como en el agua, transformaciones en el sentido de su simpificacion, i, si se quiere, mineralización, de tal suerte, que la constitución quimica, complicada y mal definida en que se te encuentra constituyendo el tegido animal, pasa á las formas sencillas y bien definidas de amoníaco, ácido nitreso y ácido nítrico.

[^2]La presencia, pues, de estas sustancias en el agua prueban la existencia en ella de materia orgánica azoada en descomposición. El amoníaco, producto de reducción, y el ficido nítrico, producto de oxidación, son resultados finales, diremos asi, de esa evolución de la materia organizada; revelan pues, no una fermentación actual, sinó una fermentación anterior.

Por eso su presencia en las aguas no se considera tan peligrosa como la del ácido nitroso, que, tan oxidable como es, no habiendo pasado aún á nítrico, es prueba de que su producción es constante y por consiguiente de que existe materia orginica en fermentacion.

Por eso la mayor parte de los higienistas rechazan en abso uto la presencia de este cuerpo (1) en las aguas potables, mientras admiten cifras límites para el amoníaco y ácido nitrico y para la misma materia orgánica, de que, por otra parte, las mejores aguas nunca están del todo desprovistas.

De lo dicho se comprende que no es la pequeña cantidad de estas sustancias, contenidas en las aguas llamadas sospechosas, lo que puede hacerlas perjudiciales, sinó que su presencia demuestra la contaminación del líquido por residuos orgánicos en descomposición, y que, si no los contienen, pueden ser el vehículo de gêrmenes patógenos. prestándo es elementos de vida.

Es por eso, que se clasifican como sospechosas las aguas que superan las cifras limites que se han adoptado para dichas sustancias y otras, que llevan en solución.

El cuadro que sigue puede servirnos de norma para el efecto:

[^3]| Por 100 Litizo de Agua. | | ज | | $\begin{aligned} & \frac{1}{i} \\ & \frac{3}{2} \end{aligned}$ | | \bigcirc | | | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oxido de Calcio: gramos. | 11-12 | - | 11-12 | - | - | 12-13 | - | - | 25-12 |
| . . Magnesio. | 4 | | 4 | | - | 4 | - | -- | 5 |
| Acido Sultúrico. | 8 | 0.2-6.3 | $8-10$ | -- | 0.2-6.3 | 8-10 | 0.2-3 | 10 | 0.2-10 |
| Cloro. | 3.5-5 | 0.2-0.8 | 2-3 | -- | 0.2-0.8 | 2-3 | $1.5-3$ | $2-5$ | 0.1-3 |
| Acido Nitrico. | 2-7 | 0.4 | 05-1.5 | 03 | 0.4 | 0.5-1.5 | -- | $2-7$ | $0.1-1.5$ |
| - Nitroso. | | | | | -- | Ristros | -- | -- | Rastros |
| Amoniaco. | | | | 005 | -- | Ristros | | | Rastros |
| Residuo seco a is | | 10-50 | 50 | $14-17$ | - | $5{ }^{5}$ | | 50 | 10-50 |
| Dureza total. | 3 | 3 | 2* | 12 | - | 18-20 | 5-3) | 32 | |
| Oxtgeno necrsario para | | | | | | | | | |
| - oxidar la materia orgínica | 0.2 | 0.050 .25 | 0.25 | - | 0.05.025 | 0.02-0003 | 0.1-0.2 | 0.3 | 0.02 |
| Permanganato usado | 08 | 0.2-0.8 | 0.8 | - | 02-0.8 | $08-1$ | - | 1 | 0.8 |

II

Las aguas de que prede disponer nuestra capital

Conviene ahora saber si nuesras aguas reunen las condiciones exigidas por los qurmicos é higienistas para ser verdaderamente potables. Con tal objeto he practicado numerosos analisis de las aguas que se consumen en la Asumción y las dé río Paraguay, en los puntos próximos a las poblaciones más importantes.

He aquf algunos de esos analisis: (1)

| En $100000 \mathrm{cs} . \mathrm{cs}$. | Rastros | Rastros |
| :---: | :---: | :---: | :---: |
| Materias en suspensión. | 19.800 | 7.960 |
| Residuo fijo por calcinación. | 0.200 | 0.240 |
| Acido nítrico. | 0.080 | 0.005 |
| nitroso. | 0.116 | 0.028 |
| Amoniaco. | | |
| Permanganato potísico usado para | | |
| oxidar la materia orgánica. | 3.580 | 2.372 |
| Oxigeno consumido con el mismo | | |
| objeto. | 0.890 | 0.600 |

La cantidad de agua de que disponía no me permitió

[^4]un análisis más completo, pero en la mayor parte de los casos los datos anotados son suficientes para juzgar de la potabilidad de una agua cuyos caracteres físicos y proveniencia nos son conocidos.

Como se ve, las dos muestras analizadas contienen una proporción notable, sobre todo la de la laguna, de amontaco y materia orgánica, y tambísn de ácido nitroso. La de la laguna debe pues considerarse como peligrosa y como sospechosa la del algibe. Este debe encontrarse sin duda en las proximidades de alguna letrina, y la prudencia aconseja no hacer uso de su agua como bebida. En cuanto id la primera debe desecharse en absoluto.

Más completo he podido practicar el análisis de la siguiente muestra de agua de pozo semi-surgente, que, come las anteriores me fueron proporcionadas por la amabilidad del Señor Juan Manuel Sosa Escalada.

Dureza total (En 100.000 cs. cs.)	24.4200
Residuo á 100°	31.4300
P.rdida por calcinación	13.1260
Acido nitrico	0.723*
nitroso	0.0000
sulfúrico	0.8960
Oxido de calcio	10.9864
, " magnesió	0.5946
Amoníico	0.0080
Cloro	7.9640
Permanganato potísico usado para oxilar la	
matera orgánica	$0.603>4$
Oxigeno consumido con el mismo objeto	0.16800

Como se vé la muestra analizada es buena y muy apta por cierto para el consumo.

La que sigue, proveniente del pozo artesiano del Sentor Fretes, y que debo á la amabilidad del Sr. Dante Corucci; me ha permitido efectuar un análisis mas detallado aún por haber podido disponer de toda la cantidad de liquido necesaria.

He aqui los resuitados obtenidos:

Caracteres organolipticos	Muy buenos
Reacción	Neutra
Substancias en suspensión	Rastres
Dureza total (grados alemanes)	2.0300
temporaria	1.4500
permanente	0.5000
Residuo it $100^{\prime \prime}$ por 100 litros	14.9800
Pirdida por calcinación	2.8900
Acido nítrico	0.06734
nitroso	0.0000
sulfurico	0.9876
Oxidos de hierro y aluminio	0.0058
Oxido de calcio	2.0320
- magnesio	Rastros
Amonifico mineral	0.0035
albuminoide	No hay
Cicro	1.3768
Permanganato potâsico empleado para oxidar	
- ia maseria orgánica	0.72988
Osigeno consumido con el mismo objeto	0.18000

Como se ví, estas aguas no pueden sct mejores. El residuo totai de la primera, aunque mucho inferior que el de lus aguas de los pozos somi-surgentes de Buenos Aires (que son reputadas sin embargo muy buenas) es doble que la del pozo del señor Fretes.

El agua corriente de Buenos Aires, tal como se distribuye á la población, suele liegar á tener el mismo residuo de evaporación que el de la muestra del Señor Sosa Escalada.

Contenida en 100 litros．				
Dureza total（grados atemathes）	8.178	21.0600	2.2400	2.240
Dureza temporaria	1.5000	4.8720	0.5200	0.540
permanente	6.5780	16.1880	1.7200	1.7000
Residuo a 100	30.7500	68.9850	14.3000	14.5000
Pérdida por calcinación	38000	9.9980	3.9800	4．6200
Acido nitrico	0.1370	0.4740	0.0720	0.0730
nitroso	－	0.0020	－	
sultúrico．	322896	0.1200	0.6860	0.6904
Oxiuo de calcio．	4.8900	13.4320	2.2700	2.2100
magnesio．	2.1740	0.3200	Rastros	Rastros
Amonitaco．	0.0150	0.0040	0.0040	0.0085
Cloro	3.6080	29700	1.7750	1．82）
Permanganuto potásico usado para oxidar la materia organica．	1.8920	0.7854	0.1128	0.4512
Oxigeno consumido con el mismo objeto．	0.4730	0.1563	0.1120	0.11 .18
Silice y silicatos inso－ lubles．	6.8980	Rastros	Rastros	Rastros
Oxido férrico y alumí nico．	2.1460	0,3576	Rastros	Rastros

De los análisis precedentes se ve resaltar la superiori－ dad del agua de la napa semi－surgente de Asunción，asf como la de la ciudad de Concordia．Un residuo total de 30 gramos por 100 litros de agua（que como se ve sucle
tenerios la misma agua de Buenos Aires) estí por debajo de la cifra limite señalada por Kubel, Tiemam, Ad. Lieben y el Congreso internacional de Bruselas, que indican la cantidad de 50 gramos como miximun de: residuo á 180 "que debe tener una buena agua.

A la temperatura de calcinación las residuos fijos de las aguas que nos ocupa serran:

En reaidad, de todos los analisis que he practicado de las muestras de agua de pozos semi-surgentes de la Asunción, solamemte la ya señalada ha ofrecido un residuo a 100 mayor de 15 gramos por 100 litros. Podemos pues, admitir la cantidad de 15 gramos como la media real. lo cual coloca ai dichas aguas en condiciones excepcionalmente buenas, si se considera que el único defecto de que suele hacerse cargo á las aguas de pozo semi-surgente, es la de dejar demasiado residuo de evaporación y ser algo duras. Pues bien, los pozos semi-surgentes de la Asunción dejan menos residuo y son menos duras que el agua corriente de Buenos Aires, siendo al mismo tiempo iguat 6 superior por todos los demís datos del análisis.

Las aguas corrientes de Buenos Aires, sin embargo, según la afirmación categórica de la primera autoridad argentina de la materia, "son las mejores y més puras de que se surte la población." (1)

Seguramente no hay que dar mucha importancia a unos gramos mas 6 menos de residuo fijo, tanto mís que su cantidad varia para un mismo punto, de acuerdo con los cambios que experimenta la napa ó corriente de agua, en su volumen, en la velocidad de su corriente y otron movimientos derivados del viento ó del tráfico, si se trata

[^5]de rios, o de la mayor o menor cantidad de agua que se extrae, si se trata de pozos.

Ei agua del Rio de La Plata, por ejemplo, varía en su residuo total it 100° por 100 litros, entre 19 y 30 gramos. Generalmente, sin embargo, esta cifia oscila alrededor de los 20 gramos. La napa semi-surgente, dor su parte, deja un residuo de 50 á 90 gramos, pero en general oscila entre 60 y 80 . Jamís se ha observado el menor inconveniente producido en la salud de los que toman estas aguas. Las mismas de la primera napa, que llegan á un residuo de 200 y más gramos, sólo producen ligeros desórdenes gástricos en los primeros dias de su uso, para no causar dospa s el menor inconveniente en los que las consumen.

No por eso, sin embargo, hemos de dejar de reconocer la superioridad de un agua que tiene un residuo de 15 gramos sobre de otra que tiene 80, sobre todo después de las demostraciones de Friedleben probando que las sales de calcio de las ayuas no intervienen en la alimentación.

Todos los demás datos son completamente tavorables if las muestras analizadas y sin titubear podemos clasificar las aguas de pozo semi-surgente de la Asunción mejores que las aguas corrientes que se distribuyen en la ciudad de Buenos tires y mejores también que la de los pozos semisurgentes de la misma.

La ciudad de La Plata se provee de agua de la napa semi-surgente desde su fundación y en la actualidad se ha dotado de agua á las prroguias de Fiores y Belgrano de esta capital mediante dos pozos semi-surgentes, cuyos tubos son de 16 pulgadas de diámetro, proporcionando cada uno de cuatro á cinco mil metros cúbicos de líquido por día.

Hasta ahora ninguna queja, ni inconvenience alguno se ha producido con respecto at la calidad de agua asi proveida.

El agua de pozo semi-surgente tiene la ventaja de pod́́rsele distribuir, sin necesidad de manipulaciones previas, tal como sale del pozo, mientras que el agua de nuestros ríos precisa procedimientos costosos para clarificarla, y así mismo no hay filtros que puedan darnosla tan límpida como la anterior. Para conseguirlo, hay que recurrir á
sustancias quimicas, tales como el alumbre ó el suifato de alumina, que si bien en nada perjudican a la bondad del liquido, hacen en cambio aumentar de mucho su costo.

Los filtros de la ciudad de Buenos Aires, cuya instalación y funcionamiento son tan perfectos como los mejores de Europa, dan sin embargo una agua completamente turbia, porque es tan extremada la tenuidad de la arcilist que tiene en suspensión el Rio de La Plata, que no hay filtro que pueda deteneria, a menos que se empleen los de Chamberlain, imposible de adoztrose para la provisión de toda una ciudad.

El agua de los pozos semi-surgentes no tiene este defecto, y si bien algo más dura que la del rio, no puede ser mejor como bebida y para los demás usos domésticos; pero ocurre preguntar:
¿Serai inagotable el caudal de aguas subterráneas que corren bajo el suelo de la Asunción?
¿Puede garantirse para siempre la no contaminación de esas aguas?

Hasta ahora la ciudad de La Plata nada ha tenido que desear en cuanto á la calidad y cantidad del agua que recibe de sus pozos semi-surgentes. El agua de Flores y Belgrano tampoco puede ser mejor.

En cambio, en otros puntos de la ciudad de Buenos Aires, en donde no llega el servicio de aguas corrienter, he podido notar en más de una ocasión la presencia de notable cantidad de ácido nitroso en el agua de la segund:a napa que surte á muchísimas casas.

He podido también notar que cuando se extrae gran cantidad de agua del pozo del Mercado de Abasto desciende sensiblemente el nivel del agua de los pozos de la primera napa que se encuentran á sus alrededores. Lo cual prueba que en algunos puntos existen fisuras que ponen en comunicación la primera con la segunda napa, y como la primera estii toda contaminada en la ciudad de Buenos Aires, (1) resulta asi también parcialmente contaminada la segunda.

De esto se deduce que no carece de peligros el confiar
(1) El agua de les puros de balde recientemente cavados on Liniers, on ta parte que queda dentro del perimetro de la Capital Federal, es buena Pero on esas paraje- to hay poblacion y no extsten, nif ban extotido terrlas- a ntron focus de contamianción.

Wda la provisión de agua de una ciudad á ua pozo semisurgente, poique, si lleguri it contaminarse por cualquier circunstancia, resultaria que toda la ciudid tendra que heher agua contaminada.

Este peligro disminuirft si se conflara dicha provisión if varios pozos colocados en los extremos opuestos de la ciudad, porque la distancia que los separa impediria su mutua contaminación.

A más, existe siempre el recurso de ir hasta la tercera y cuarta napa, lo cual puede hacerse con los mismos pozos que ya existicran.

Pero asi y con todo ta prudencia no puede aconscjar que deba dependerse en ab-oluto de las aguas subterrineas para todo el consumo de una población, que tho tieme un sistema de cloacas y de desaghes apropiado para hechar lejos todas las inmandicias y residuos animales, así como clagua de las lluvias que lazant la ciudad. En la Asunción todo esto, ó es expontineamente absorbido por la tierra, ó va á parar á letrinas y sumideros que están en comunicacion directa con la primera napa de agua.

Repito, hasta ahora estos no son más que temores, con respecto ai la Asunción, pues ya se ha visto que la calidad del agua de su napa semi-surgente es inmejorable.

A más, hoy por hoy la Asunción no puede e egir respecto de cual debe ser la fuente de su agua de consumo, pues los gastos de la instalación y mantenimiento para las maquinarias, túneles, filtros, ete., serian tan grandes que no puede pensarse en cllo. Hay, pues, que recurtir al agua semi-surgente.

Quédanos ocuparnos del caudaloso río Paraguay. En cuanto al agua de los algibes, cuya contaminación revela á menudo ei analisis, no carece de inconvenientes. Como agua llovida que es, carece de esa pequeña cantidad de sales cuya presencia concurre í la potabilidad de una agua; por su estancamiento, no tiene la aereación necesaria y. por falta del cuidado necesario, contiene à reces suciedades provenientes de los techos y de sas canos de desaguie, asi como suele tambi n estar contaminada por la proximidad de letrinas. A más, la provisión de agua a una entera ciudad por el sistema de algibes o cisternas serfia siempre costoso y deficiente.

Más fácil seria, pues, y más natural recurrir á las aguas del rio.

Las ciudades de Corrientes, Paraní, Santa Fé, Rosario y Buenos Aires emplean de las aguas del roo para su servicio público, y en verdad no tienen porqué arrepentirse de ello. Dichas aguas de consumo han sido analiradas mil veces con resultados satisfactorios. Bástanos, pues, para juzgar la bondad de las aguas de nuestro rio, comparar su composición con la obtenida por el analisis para las del río Paraná y el de La Plata.

He presentado ya un analisis del agua que se distribuye en Buenos Aires en comparación con las de la mupa semi-surgente de la misma ciudad, las de Concordia y las de la Asunción.

En el cuadro que sigue ofrezco el analisis completo que he practicado de las aguas de los ríos Paraguay, Parani y de La Plata.

De estos analisis se ve claramente la contaminación de que son objeto las aguas en los puertos y á orillas de las grandes poblaciones. Lo revela así la presencia de una gran cantidad de materia orgánica y de amoníaco mineral y también de amonfaco albuminoide encontrada en los puertos de Villa Concepción, Asunción y Humaitía.

Las muestras provenientes del Paraná y Rio de La Plata no han sido tomadas en los puertos sinó fuera de ellos. Presento pues sus análisis para que puedan servir de tipo para el caso presente, pues son consideradas como buenas.

También hay que tener presente que las muestras sobre que he trabajado, menos la del río Paraná, y de La Plata, no las he tomado personalmente, y que tal vez no siempre se han observado las debidas precauciones. En todo caso, pues, serían mejores y no peores de lo que el análisis las presenta.

Análisis de las aguas del río Paraguay en com

Contentido ex 100 himras			
A -pecto	Opalino	Opolino	, Dpalina nomux prorunciail.
Reacción	Neutra	Neutra	Neutra
Total (grados ulemanes)	1.16000	2.1060	0.56000
Dureza - Temporaria	0.19500	0.28700	0.07000
! Permanente	0.96500		0.40000
Substancias en suspersión Leramos	1.20600	1.82000	0.67540
Residuo a tox	12.34800	14.71800	6.34580
Perdida por catcimación	6.37000	6.78000	1.82000
Anhidrido silicico	Rastros	0.08760	Rastrou
Oxido férrico	Rastros	0.02900	Rastros
- alumimico	Rastros	0.01850	Rastrou
Acido nitrico	0.10800	0.14478	0.48636
- mitroso			
- sulfírico	0.55200	0.61200	0.18538
Oxido de calcio	1.06500	2.13420	0.56600
- de magneaio	Rastros	0.31703	0.10890
Amoniaco	0.03120	0.03500	$0.00 t 00$
atbuminoide	0.01200	0.00280	0.00210
Cloro	1.67480	2.13465	0.85509
Permanganato potásico empleado para oxidar la materia orgainica.	5.87710	5.54000	1.73965
Oxigeno constunido con el mismo objeto.	1.36000	1.38500	0.44000
Gases disueltos Oxigeno es, cs.	664.50000	680.00000	496.50000
(cálculo à 0° y Azoe es. es.	1797.80000	1960.50000	1540.00000
760 mm . Anhidricocarbonico	332.00000	884.00000	212.40000

paracion con las del Paraná y Rio de la Plata.

		$\begin{gathered} \text { Tomada Aguas akriba } \\ \text { de Hemaita } \\ \text { EN Plexo - RIo } \end{gathered}$			
Opalino	Opalino	Opalino	Opaline	Opalino	Opalino
Neutrit	Neutra	Neutra	Neutra	Neutra	Neutra
1.0300	1.40000	1.38200	1.15800	1.98200	4.91000
0.15000	0.17000	0.16800	0.69000	0.30700	0.75000
0.91000	1.23000	1.21400	Q. 488800	1.58500	3.85000
0.77680	1.13000	0.91400	0.98600	4.98200	4.12000
11.39862	17.18940	16.98700	11.50000	20.46700	26.08000
6 ± 1046	9.86700	1.86643	0.87210	5.68800	3.72400
1202312	Rastros	Rastros	Rastros	0.07462	0.27256
0.01823	Rastros	0.00850	Rastros	0.19654	$0.027+2$
Restros	Rastros	0.01220	Rastros	0.21033	0.88131
0.04952	0.05270	0.05118	0.01963	0.02794	0.09652
			-	-	-
0.55124	0.71000	0.67342	0.16478	0.98654	2.11235
1.96583	1.46723	1.58200	0.60127	2.18400	2.06432
Rastros	0.26300	0.18640	0.11450	0.99860	1.02300
0.00084	0.03700	0.00420	0.00600	0.01200	0.01600
0.00022	0.00314	0.00310	Q 00110	0.00211	0.00182
1.61875	2.14320	0.68430	0.97840	278500	2.89000
1.58000	5.96920	1.50480	1.48030	1.45498	1.12143
0.3950	1.49230	0.97620	0.87000	0.36800	0.28363
658.00000	740.50000	722.50000	620.00000	-	-
1670.50300	1885.60000	1436,00000	1398.50000	-	
298.89000	415.22000	896.30000	212.86000	-	

También aquí es de notarse que el residuo fijo que dejan las aguas del rio Paraguay es menor que el que dejan lat del rio Paraní y de La Plata. Asi, pues, tanto la napa semisurgente de la Asunción como el rio que banan sus costis dan un agua con menos residuo total y menos dureza que ia de la napa semi-surgente de Buenos Aires y los rios Patama y de La Plata. Ello està naturalmente en relación con la clase de tierras que dichas aguas atraviesan y no deja de ser una ventaja a nuestro favor: sobre todo por lo que respecta ii ciertas industrias y ii los generadore de vapor en general.

Por lo demàs, bastat comparar los analisis de las aguas del roo Paraguay - le muestras tont las en parajes alejados de toda causa de contaminación-para convencerse que las de nuestro río son por lo menos iguales it las del Paranit y de Lit Plata.

Métodos para clarificar
 y purificar el agua.

Amente dicha, esto es, la trasmisión de enfermedades de naturaleza infecciosa por medio de los micro-organismos que las producen. Por eso los métodos de purificación para las aguas se dirigian tan sólo á clarificarlas, concretándose por lo tanto á una sencilla filtración, à través de cuerpos porosos ó de cadas superpuestas de carbón, arena y pedregullo. De esta mancra se separaba la mayor parte de las sustancias sólidas que el agua tenía en suspensión, y al mismo tiempo, mediante el empleo de carbón, se le libraba de pequeñas cantidades de gases mefíticos que pudiera contener disueltas.

Esto sin embargo no alcanza a llenar el objeto que debe proponerse una verdadera purificación, pues ella debe dirijirse también á la eliminación de los gérmenes infecciosos.

Desgraciadamente los métodos ahora en uso no pueden aún satisfacer por completo las exigencias de una buena profilaxia.

Los filtros de la ciudad de Buenos Aires, por ejemplo, consiguen separar hasta el noventa por ciento de los bacterios contenidos en el agua antes de la filtración. Si nó que raras veces esto sucede, Hegando en cambio ocasiones en que sólo un diez por ciento de los micro-organismos es retenido por los filtros, 10 cual ha sido comprobado por numerosos análisis practicados por el malogrado Sr. Eugenio Cella, químico principal que fué de la Olicina Quf́mica Municipal de Buenos Aires.

La enorme diferencia en la eficacia de la filtración que así se manifiesta es debida sin duda a la mayor ó menor

Whocidad con que se practica la meración y it la mavor is menor limpieza de los filtros.

Los únicas tiltros que hasta ahora puejen darnos unit agua libre de hacterios son los de Chamberland-Pasteur, que consisten, como es sabido, en unas especies de bujpas huecas de porcelana no barnizada, á travis de cuyas pairedes se re obligado a pasar el líquido hajo la presión que levai en las cañeras del servicio público.

Los poros de porcelana san tan diminutos, que so.o prede atravesados el agua, quedando asi libre de toda sustancia stidı que contenga en suzpension. De esta manera queda el líquido exento por completo de microorganismos.

I pesar de ello, sin emburg, los numeroses annilisis bacteriofógicos practicados por empleados de la Oficina Química Municipal de Buenos Aires han demostrado que el agua obtenida de dichos filtros al cabo de algunos días de runcionamiento llegaba ai tener mayor número de bacterios que la misma agua antes de ser filtrada.

Este hecho habra sido ya notado por Kuble, lo cual, agregado a las probabilidades que existen siempre de pequenos defectos en las bujias por deterioros durante el transporte, ó descuido al seleccionarlas despús de su fabricacion, han disminuido en mucho el prestijio de estos filtros y similiares, como los de Nordtmayer y otros.

En los casos en que la presencia de bacterios no es debida a malas condiciones del filtro (fisuras en lat bugka, os ajuste defectuoso de ella con el resto del aparato) solo puede suponérsele ocasionado por el desarrollo de coionias que van efectuindose en el espesor de las paredes mismas de las bujias y por su contacto con el aire exterior. Teoricamente sin embargo el segundo caso no sería admisible, paes el filtro, por efecto de la misma filtración, está lavindose constantemente en la superficic exterior con agua libre de germenes.

De lo dicio se deluce, que para tener garantias del buen funcionamiento de estos filtros se impone su frecuente exterilización, lo cual se consigue haciéndolos hervir en agua durante una media hora cada dos \dot{o} tres dias, procedimiento engorroso y que concluye por deteriorar el material en un plazo relativamente corto.

Despuis de los filtros sistema Pasteur viene el de lat clariticación por el alumbre, como medio eficaz para parrificat el agua.

El alumbre empleado en pequeñas dosis de cuatio ai diez centigramos por litro, precipitat todas las sustancias que existen en suspensión en el agua, las cuales arrastran timbisn consigo buena parte de los bacterios contenidos en la misma.

Ei procedimiento ulterior se concreta di una simple decantacion, si se dispone del tiempo suficiente para esperar que sea completa la precipitación, í una sencilla filtración ditravés de arena, si no se dispone de tiempo.

Es preferible decantar el agua, tanto por que resulta más económico, cuanto porque en la filtración if través de lat arena el agua se emriquece de nuevos gérmenes, it menos que se destruyeran los contenidos en aquellat, mediante una calcinación prévia para cada filtración. Esta calcinacioon haria más engorroso y dispendioso el procedimiento, sin proporcionarnos asi mismo un liquido completamente libre de bacterios.

Sólo queda el único y expeditivo medio de fweir él agyta para tomarla libre de gstmenes. En una epidemia pues, en aquellos casos en que el agua puede ser un vehiculo de contagio, no fuy meis remedio que hervirla para ponerse al abrigo de todo temor por este ludo. No pidamos por lo tanto más de lo que puede pedirse i los diversos m todos de clarificación y puriticación actualmente en uso.

Son buenos filtros también, dentro de los limites ya indicados: los de " Micro-memberame"; el de carbón Maig. nen; el de carbón y amianto, de que existen numerosas marcas ahora; el nuevo filtro aleman if base de hojas de papel de filtro que el agua atraviesa bajo presión. Pero estos aparatos están únicamente destinados para el uso particular, nó para la provisión de una entera ciudad.

Para el servicio público merecen ser citados el sistema rotativo Anderson y el filtro de M. Breyer.

El sistema Anderson funciona en tres secciones de Paris: Choisy-le-Roi, Neully-Sur-Marne y Nogent-surMarne:

Se basit este procedimiento en poner el agua en con-
tacto con numerosos y pequenos discos de fierro contenidos en unos cilindros tamsién de fierro, llamados revolvers, yue estín en movimiento continuo para facilitar el contacto de toda el agua con los pequeños discos. Debido af este contacto las sales solubles se vuelven insolubles bajo el influjo de una aereación enérgici. Enseguida se decanta en grandes piletas especiales que comprenden: un llamado adelgazador, destinado í separar el precipitado más grueso; un estanque de precipitación y otro de decantación propiamente dicho. Después de esto se filtra el agua a través de aparatos formados de capas sucesivas (de abajo para arriba) de ladrillos porosos, de arena gruesa y de arena fina en tamaño decreciente.

Este procedimiento se ha adoptado también en Libourne (Gironda).

En Buenos Aires se han practicado ensayos por el sistema Anderson, con resultados comparables y uilvez algo superiores i los que se obtienen con el métudo actualmente en uso, pero el agua obtenida nunca perdió por completo su aspecto opalino. A más los gastos de instalación y mantenimiento no son menores que los que exigen el antiguo sistema.

Fillro Breyer. Este filtro, cuyo autor es el ingeniero austriaco M. Breyer, no exige grandes instalaciones, y es menos costoso que los filtros de arena. Las experiencias que se han hecho con él en París en 1895 han dado el resultado siguiente : Se tomó una agua de rfo turbia, otra en que se habia desleido arcilla (sustancia que entorpece el funcionamiento de los mejores filtios) y una tercera tenida con añil.

Cerca de tres mil litros de agua en estas condiciones atravesaron el filtio en seis minutos quedando completamente limpidos y cristalinos.

El Sr. Breyer se sirve del amianto como materia filtrante y la caja de fierro destinada pata el objeto contiene veinte filtros de dicha sustancia, representando una superticie útil de reinte metros cuadrados. De esta manera, con un aparato que ocupa un espacio poco mayor de un metro cúbico, se dispone de una superficie filtrante considerable.

Cada uno de estos aparatos puede proporcionar 500 metros cúbicos de agaa filtrada en 24 horas.

Se asegura que uno solo de estos elementos Breyer, ligado con una bomba de mano, constituye el medio más eticaz para proveer de agua pura a las tropas en campana. Basta sumergir el aparato en el agua que quiere tiltrarse y hacer funcionar la bombal. El liquido, obligado a atravesar los filtros de amianto por la aspiración de la bomba, sale completamente límpido y cristalino.

Desde hacen muchos años ya se practica la filtración en gran escala en numerosas ciudades. En Londres se emplea con este objeto los filtros de arena desde 1893. Los mismos fueron adoptados en Berlín, Varsovia, Annovers, Altona, Zurich, Amburgo, Koenigsberg, Buenos Aires y Paraná. Las galerfas filtrantes, en que se hace pasar el agua it través de túneles sub-fluviales hechos con ladrillos porosos, se usan en Nancy, Tolosa, Lyon, Angers, Floreacia y parcialmente también en Buenos Aires. Los filtros de piedra artificial se utilizan en Worms.

Segin M. Bechmann en 1892 noventa y cinco ciudades de Francia filtraban el agua destinada para el consumo de sus habitantes y según los sistemas empleados por cada una de ellas se dividian de la siguiente manera:

La bondad de todos estos sistemas es indudable, pues mejoran seguramente muchísimo las aguas de consumo. Bajo el punto de vista bacteriológico, sin embargo, ya he dicho que ninguno ofrece la menor garantia de eficacia.

Se ha en-ayado también, con resultados muy halagüeños, en Europa y Norte América, la exterilización del agua por medio de la electricidad. Falta ver si el procedimiento serfa ventajoso tratandose de todo el servicio de una ciudad. Mientras tanto lo hecho a este respecto no pasa hasta ahora de simples ensayos. (1)

[^6]Pata lo que ha sido ya adoptado el empien de in corriente eléctrica es para la depuración de las aguas cloachies. M. Webster propuso este procedimiento, haciendo pasar en el seno del liquido cloacal una corriente prolucida por un dinamo, valiéndose de un cilindro de carbón para el eléctrodo positivo y otro de fierro para el negativo.

Se forma asi óxido ferroso que arrastra hacia la superficie la materia organica en suspensión, constituyendo con ella una espuma que se hace salir por un camal. De estal manera el liquido cloacal queda claro é inodoro, conservando cuando más un lijero aspecto blanquecino if ceroso.

El procedimiento Webster se emplea en la ciudad da Leeds.

Otro procedimiento el de E. Hermite ha sido tambien adoptado en rarias localidades. En Et, la corrieate elfetrica, nos la proporciona también un dinamo. El polo positivo is forman varios hilos de platino y el polo negativo lamiaas de zinc. Hay que agregar al liquido cloatal un poce de cloruro de cal ó de sodio al someterio it la corriente. S. forma en estas condiciones un compuesto oxigenado de cloro en el polo positivo y en el negativo un óxido metálico que produce la precipitación de la materia orginica.

Hay también otros procedimientos en que se hace pasill el agua, cargándola previamente de anhídrico carbónico, por recipientes que contienen numerosos pares sinc-cobre:

Para concluir agregaré á lo dicho que si yo tuviera que aconsejar un método para la clarificación y purificación del agua del río Paraguay ú otras análogas, propondria el empleo del alumbre, seguido de la decantación después de un reposo de 48 horas. Dicho procedimiento proporciona siempre una agua clara, produciendo también una notable disminución en el número de bacterios existentes antes del tratamiento. Esta constanciaen los resultados no la obtendriamacon ningún otro método.

Transcribiré finalmente las conclusiones á que llegó la Municipalidad de Paris en un concurso abierto para los procedimientos de purificación y exterilización de las aguns

[^7]derio. Las tomo de la comunicación del Dr. Martín, con cuyos términos deja ell expuesto el estado de la cuestión en 1x95. Dicen así:

- 1. Et con ura abierto por la ciudad de París, con el objeto de buscar el mejor aétodo de purificación ó de esterilización del agua de rio destinada a la allmentación de una ciudad of de grandes establecimientos, praeba de una vez mats que hasta el presente es de todo puato imposible obtener con filtro alguno. grande if pequeñ, y de una manera permanente, una agua comparable a la de manantial, hien elegida, convementemente distribuida y suficientemente prot jida. La verdadera purificación del aguz destinada para bebida consiste en proveerla de manantial.
-2. - Lats condiciones actuales de alimentación de Paris en aquats potables hacen necesarit, sobre todo para remediar por el momento ai la insuficiencia del aprovisionamiento de agua de manantial, la instalación de aparatos suceptibles de asegurar lat toma más conveniente, la mayor purificación y mejor distrihucion posible del agua de rfo.,
*3. - El único procedimiento que parece actualmente aplicable a fa filtración en grande de toda ó parte del agua de allimentación de una ciudad consiste en la filtración por arena, con $\delta \sin$ el empleo de procedimientos de oxidación de la materia orgánica, mediante la adición de reactivos inofensives y empleando ó no piletas de decantación.
* 1." - Cualquiera sea el procedimiento adoptado, debe quedar sometido a una vigilancla constante, tanto bajo el punto de vista de su funcionamiento téenico como del de su analisis químico y bacteriologico. Las disposiciones deben ser tales que, si una porción cualquiera de los filtros se hace defectuosa o sospechosa, puede ser inmediatamente suprimida y reemplazada.
e.5- - Cuando en una aglomeración limitada de personas, tal como una escuela, un cuartel, un hospital, el agua distribuida se hace sospechosa of manifiestamente contaminada, se hace entonces necesario, si se le destina para behida, hervirla y depositarla en paraje aereado y alabrigo del polvo atmosférico. Es conveniente en estos casos eliminar todo procedimiento de filtracion if. purilicación hazta ahora conocido, cuyos medios de conservación, limpieza y vigilancia son practicamente irrealizables.?

Lo que se deduce de estas conclusiones es sencillamente lo siguiente: No existe ningún filtro que ofrezca garantias de verdadera eticacia bajo el punto de vista bacteriológico y que en caso de contaminacion no hay más remedio que hervit el agua.

En cuanto á la preferencia que se dá á la filtración por arena para las aguas del rfo, yo insisto en el tratamiento por el alumbre, y suficiente reposo 5 decantación, porque su superioridad la considero bien establecida ya por las numerosas experiencias, en pequeño y en grande, que he presenciado y que he practicado yo mismo.

El Dr. Pedro N. Arata, Gefe de la Oficina Química Municipal de Buenos Aires, después de numerosas experienciapracticadas personalmente, fué el primero en aconsejar el empleo de esta sal para las aguas corrientes de la Capital Federal, indicando también las cantidades necesarias de la misma. Con todo, el procedimiento era conocido ya y empleado desde hacen vairos siglos en China, de donde pasó a Europa y de ahi, á América.

Pozos Surgentes y Semi=surgentes.

EL principio sobre que se basan estos pozos es muy sencillo: Se trata tan solo de abrir unat salida en los valles at las aguas provenientes de las montaflas y que corren por sobre su lecho impermeable de arcilla it mayor ó menor profundidad de la superficis: El agua subterránea que desciende a menudo de las grandes alturas (lluvias ó deshielos en las montañas), corre por el subsuelo comprimida ii veres entre dos capas impermeables. El líquido entonces sale con fuerza por el agujero practicado con la sonda, elevándose á mayor ó menor altura sobre la superficie del suelo. Tendriamos asi un pozo surgente. Los manantiales en que vemos brotar expontáneamente el agua de las entrañas de la tierra, obedecen al mismo principio hidrostatico. Son pues pozos surgentes naturales, δ, mî́s propiamente dicho, los pozos surgentes son manantiales abiertos artilicialmente.

Otras veces, y es lo general, el agua no llegat hasta lat superficie, siendo necesario elevarla por medio de una bomba. Estos son los llamados pozos semi-surgentes. El nivel de origen de sus aguas no es bastante elevado ó su volumen no es suticiente para que, comprimidas entre dos capas impermeables, se precipiten por la primer abertura, elevandose hasta alcanzar el nivel primitiso superior al del paraje en que se ha practicado el pozo.

Casi la totalidad de los pozos, debidos al sistema de perforacion artesiana, que existen en el Paraguay, República Argentina y Oriental pertenecen a los semi-surgentes. Sus aguas son frescas, cristalinas y de sabor agradable. No cortan el jabon, ó apenas lo hacen, y cuecen bien las verduras. Ellas ia más son asfoticas, como ha podido com-
nrobarse en mumerosos analisis practicades en la Oficim Quimica Municipal de Buenos lires, hecho que por oith parte Frankel admite para tolas las aguns sabternineas, if menos que estuvieran entaminadas por infittraciones de pozos ciegos, estercoleros, ett. dún en estos casos hay que tener presente la accion filtrante de la enorme masit de arena que estas aguas tienen que atravesar y que concluve por retener tolis las sustarcias que el liquido pudiera llevar en suspension, aún los bacterios. Este hecho yo mismo he podido ponerlo en evidencia en mis de una ocasión, encontrando asśptica hasta aguas do poso semuisurgente que contentan dicido mitroso ch motable cantidud y que par lo tauto domostránut la presencia de una constaminación mis ó mmos recionte. Por ctra parce, siempre he polido constatir mear cantidude baterios eal las muestras de agua semi-surgente que en las del agua (o)riviente, tomadas en las mismas condiciones, es decir en las condiciones en que se consumen, y practicalas las siembras pocas horas despu's de la toma de muestras.

Esto prueba que las aguas de pozo semi-surgente, autn en los casas en que han acusado ta presercia de pequeãas cantidades de ácido nitroso, han podido ser consideradas tan aptas para el consumo como el agan corriente que se distribuye it lat población de Buenos Aires.

En vista de lo dicho podemos considerar suficiente, en la mayor parte de los casos, la filtración subterriinea que experimentan las aguas de las napas profundas para privarlas de la presencia de todos los kémenes patógenos, que pudieran haber adquirido por contaminacion.

A pesar de ello, sin embargo, no serfa prudente permitir el consumo de una agua declarada sospechosa por el analisis, sin someteria previamente a un detenido examen bacteriologico, porque podría suceder que, debido it un foco de contaminación muy prôximo, el espesor de arena que ha atravesado el liquido antes de ser extraido, no hayia sido suficiente para su filtración perfecta, ó que ayuas contaminadas de la primera mapa se hayan mezclado directamente con las de la segunda en el mismo punto de extración, por culpa de deterioros en las cañerías a defectos de construcción.

En verdad no hat sucedido hasta ahora que el aguat
'de un pozo semi-surgente haya sido causa de enfermedades infecciosas. Voy it relatir sin embargo un hecho. que ss refiere it aguas comparables hasta cierto punto con las de pozos semi-surgentes, que contradice mi opinión respecto á la elicutia de la filtración subterranea. Aferiumadamente es un hecho aislado ó por to menos, ningán otro ha sido rigurosamente comprobado, mientras la observación diaria y las experiencias de laboratorio concuerdan en confirmar la asepsia de las aguas subtertaneas de las napas profundas y la eficacia de las espesas capas de arena para detener los bacterios.

He aqui el hacho it que ma refiero y que transcribo de la erudita obra de los Sres. A. E. Salazar y C. Newman, titulada "Examen Quindico y Buteriológio de las Aguas Potables." (Londres, Burns y Oates):

- E1 7 de Agosto de 1s73, estilló en Lausens lugarejo d 1 cantoon de Basilea, en Suizu, usa epidemla de fiebre tifoidea, de la que solo escapatoon s is casas en un total do noventa, con la particularidad de que aquellas eran las énicas que no se surtian del agua publicit La cual por proveuir de unas rertientes nacidas en la fulda de la mantaiti de. Stockhatden. Y Itevada al abriga de tod: conlaminación á un depósito eapecial, n) podial dar lagar a sospechas de que liese causante del mal. Sin embarge, hablise descubierto anos atris que dichas vertientes estaban en comunicación subterraneat con al arroyo Furlerthal del valle situado at otro lado de la montaña, at través de más de un kikimetro de tertend; y averiguose depués que tres semamis antsdet comienzo de la epidemin habfa ocurrido un caso de fiebre ell unat cisa. cuyos desperdicios iban at parat al nombtado arroya. infeccionando las asuis de éat: y por consiguiente las de lat población de Litusen. En el hoyo en que se perdia el Firlerthat echironse preriamente disueltos is quintales de sat, y et agua de L.ausen se torno algo salada. En cambio, reempliviurdo lat sal por harina, ni restigios de esta aparecieron por el otr, Lado: lo que prueba que el agza sofo pasaba despues de experimentar that perfecta filtraitan natural. El caso descripto, labor riosameate investigado por el Dr. Hagler de Basilea, probaba sim lugar a dudas que el veneno de la liebreo habia sido llevado por el agua a la población victima de la eptdemia y, cosa mur digna de notarse, que una filtración tin completia coma aquell:, en nada allerabar al dicho vemeno. a
Mientras tanto Grancher y Deschamps (Recherches sur le bacille tiphique dans le Arch. de Med. Exp. et d'Anat. Pith., Tomo I, 1889, píg. 33) en Francia llegaron á conclusioncs experimentales enteramente favorables á mi opinión,
valiéndose al efecto de cilindros de zine, de 2 mts . 40 cent. de altura, en el interior de los cuales se habrin reproducido fielmente cinco capas sucesivas del terreno de Achères, en diferentes condiciones de humedad, de compresión de la tierra, etc. Vertiendo en la parte saperior cultivos puros artificiales del bacilo de Eberth, y después, con diversos intervalos, agua exterilizada, en ninguno de los dos experimentos pudieron encontrar en el agua de filtración el mencionado germen.

Algunos bacteriologos observan que tal vez los resultados de estas experiencias hubieran sido diferentes si en lugar de emplearse cultivos artificiales se hubiesen empleado directamente las deyecciones de un dotinent rico, porque es desuponerse, dicen, que alcanzando el bacilus de Eberth su maximun de virulencia en el organismo humano, tambien puede suponérsele el maximun de resistencia, y que por consiguiente pudiera resistir at la filtación mejor en estas condiciones que bajo las de los cultivos artificia es.

Por mi parte creo sencillamente que en el caso de Lausen, las aguas del arroyo Furlerthal no han pasado ai trav:s de una capa de arena suficiente para su perfecta filtración, if pesar del kilómetro de tierra que las separa del manantial que surtia á dicha población, pues sucede â menudo que las aguas abren conductos subterráneos, pasando entonces por encima de la arena en lugar de atravesarla. El hecho de que la harina echada en el Furlerthal no pasaba del otro lado, poco prueba, pues la más sencilla filtración (bastaria una capa de pocos centímetros de arena), es suficiente para retener dicha sustancia.

Con todo, el hecho relatado basta para ponernos sobre aviso y poder evitar con tiempo desagradables sorpresas. Se impone por consiguiente el análisis periólico de las aguas que se consumen en toda población, como desde hace veinte anos se practica en Buenos aires bajo la sabia dirección del Dr. Arata, y cuando el analisis quimico las declare sospechosis, deben sometśrseles inmediatamente al bacteriológico, 6 , como se acostumbra en muchas partes, prohibir sin más su empleo. Este proce limiento sería tal vez el mis príctico, en vista sobre todo de la dificultad que existe para comprobar la presencia del bacilus Eberth, al que debemos la propagación del tifus, cuyos estragos
podrian evitarse con un poco mils de rigor respecto de las aguas de consumo.

Bastaria á mi entender que en la investigación bacterióógica los cultivos sobre papas correspondieran á la forma que toman los del bacilus de Eberth, para declarar la presencia de este micro-organismo.

Estoy lejos de creer que esta reacción pueda tomarse realmente como definitiva, pero, a falta de otras y cuando el analisis quimico ha demostrado la presencia de una contaminación, se impone indudablemente el rechazo de una agua vehementemente sospechosa. (1)

- Como se ve de lo expuesto, el temor de una infección por el uso del agua de la mapa semi-surgente no tiene hasta ahora fundamento alguno y en cuanto à la naturaleza y cantidad de sales que tiene en solucion, puede contárseles, sobre todo refiríndonos í las de la Asunción, entre las mejores de que pueda proveerse una población.

Siempre, pues, que se eliminen todas las ciusas posibles de toda contaminación, mediante una red de cloacas, cuyos servicios se extiendan á toda la ciudad, y prohibiendo en absoiuto la construcción de pozos ciegos y absorven-

[^8]tes, (2) no dehe titubearse en adoptar los pozos semisurgentes como medio de provision publica.

En cuanto if los pozos surgentes Doco tengo que decir respecto de elos, pues no si que en alguna perforacion sehaya dado en el Paraguay con la napa que les puede dat origen. Respecto de la profundidad at que dichat napa puede encontrarse, ello depende, como ya lo he dieho, de la mat yor 6 menor elevacion de los puntos de proveniencia de las agnas, de la naturaleza, extension y disposición de las capas permeables ea cuyo medio circua el liquido y, sobre todo, de las impermeables, entre las que el mismo se encuentra comprimido.

Ocurre alganas veces que la sonda encuentrat sucesi vamente muchas capas de agua sitaadas a altuas diferentes. En algunos sondajes practicados para descubrit los yacimientos de hulla, se han cncontrado hastal siete corrientes superpuestas y separadas naturalmente entre of por apas de terreno impermeables.

Los terrenos seeundarios son los mis adecuiados para practicar los pozos artesianos, siguiendo despuis los terciarios.

En lit sección Palermo, de la ciudad de Buenos Aires, el Sr. Bomelli, construyo un pozo attesiano de solo 27 me tros de profundidad, cuyas aguas se elevaron it un par de metros durante unos cinco ó seis días, después de los cu: les fus perdiendo el chorro su fuerza ascensionall hasta quedar convertido el pozo, despuís de otros tantos dias. en un simple pozo semi-surgente.

La composición del agua de este pozo se diferencia (por lo menos se diferenciaba en la epoca en que practiqué el anàlisis) de las aguas de los otros pozos semi-surgenteen que contiene un poso de bicarbonato de sola y anhidrido carbónico libre, como puede verse del siguiente análisis:

[^9]Avilists pamacmos bex lat Revista de Quimica y Farmacta.

\begin{tabular}{|c|c|c|}
\hline Contisidi lex 100 l.tmros \& 3

0 \&

\hline 1)ureza total. \& 23.500 \& 24.000

\hline tempararia. \& 14.000 \& 14.500

\hline permanente. \& 9.50 \& 9.500

\hline Re-sidao a 100: \& 68.940 \& 71.680

\hline \& 8,586 \& 10.410

\hline Acido nitrico. \& 0.898 \& 0.260

\hline nitrosa \& 0.060 \& 0.600

\hline suifutico. \& 1).880 \& 0.320

\hline Oxido de calcio. \& 9.753 \& 14.836

\hline - de mugnesía \& 1. 681 \& 0.189

\hline - de fierro y alumina. \& 9.230 \& 0.850

\hline Silice \& 0.540 \& 0.132

\hline cloro. \& 1.665 \& 2.970

\hline Amoninco. \& 0.004 \& 0.604

\hline Bicarbonato de sodia \& 1.062 \& No hey

\hline A cido carbónico libre. \& No hay \&

\hline Permanganato potásico empleado para oxidar la materia organion \& 0.6952 \& 0.783

\hline Oxigeno consumido con el mismo objeto. \& 0.176 \& 0.196

\hline
\end{tabular}

Pozo rerdaderamente surgente, conozeo uno soio en Bueno- - lires, en la seceión Boca. Sus aguascontienen uma
(que suministra de 7 it 8 mil metros cúbicos de agua diarios, con una profundidad de 580 metros), sus aguas tienen una temperatura de 28°; el de Grenelds. (Paris), con 545 metros, da agua i $2 \bar{J}^{\circ}$; el de S. Loutis, (Misouri, Estados Unidos), que es el más profundo de los conocidos, de 1152 metros, da agua a 41 .

Por lo que respecta la temperatura del agua de los pozos semi-surgentes de Bunos Aires, no pasa de 9° a $9^{\circ} 5$. Temperatura que al lado de sus demts condiciones de potabilidad la hacen por ciervo muy agradable.

Criterio para juzgar la potabilidad de las aguas por sus caracteres generales y por los datos del análisis quimico y bacterioz lógico.

ANTES de someter una agua al análisis no debe prescindirse del estudio de ciertos caracteres físicos y organolipticos. Es asi que debe hacerse constar si es ó nó limpida, así como su olor y su sabor; si tiene sustancias en suspensión (1) y si el origen de éstas es vegetal δ animal; cstudiar al microscopio el depósito que deja por el reposo, investigando la presencia de diatomeas, de infusorios, de esporos, de huevos de tenia, etc., etc.

Este análisis preliminar es canto más necesario en cuanto que todo el mundo sabe que una agua que no puede alimentar moluscos y que no contiene ninguna paneroginea es una agua impropia para la alimentación.

Según Mr. Gerardin las buenas aguas solo deben contener algats verdes, y las malas son tanto peores cuanto menor es el tamano de las bacteriaceas que contienen.

Bajo este punto de vista él establece la siguiente clasificación:

[^10]Tampoco debe detcuidarse el estudio de la fauna ncuática, pues ella tambi-n puede proporcionarnos elementos para la clasificación: asi, por ejemplo, una agua rica en infusorios dabe rechacarse, por que estos no se desarroHlan si no en agut-cargadas de materia orgánica, to mismo que las anglenas y las moneras.

Con tolo, el aualisis químico saria suliciente para darnos a conocer lit impotabilidad de cstas aguas, sobre todo por la cantidad de materia organier que nos revelaria y por la disminución de oxigeno, debida a la oxidación de la misma materia organica en descomposición.

En el verano de 1873 se me hizo notar sobre la superficie de las aguas de la Boca del Riachuelo, en Buenos Aires, una gran cantidad de peces muertos. Se me ocurió naturalmente e! practicar un anilisis minucioso de las mismas, el cual arojó el siguiente resuluado:

Basta fijarse en las cantidades de cicido nitroso, amoníaco y materia orgánica que arroja este amálisis para comprender que no solamente semejante agua es impotable sino que dificilmente puede darse otra peor. En cuanto á la muerte de los peces. debe mas biell atribuirse á la falta de oxigeno que a la acción directa de agentes mórbidos, por lo menos lo primero es suficiente para explicar el hecho.

El calor, unido á la falta de movimiento de esasaguas, que casi puéden considerarse como estancadas, han favore-
cido la putrefacción de la materia orgánica, disminuyendo por consiguiente, como el análisis lo revela, la cantidad de oxigeno disuelto. Esto no quiere decir, sin embargo, que no puedan existir en dichas aguas gérmenes patógenos, por más que hasta el presente las investigaciones bacteriologicas no los han evidenciado.

Actualmente numerosos analisis practicados de las aguas del mismo Riachuclo por los químicos Sr . Chinestrad y Dr. Lanzarini, que forman parte de una Comisión especial, bajo la presidencia del Dr. Pedro N. Arata, nombrada especialmente por el Gobierno Argentino para el estudio de estas aguas, demuestran que la contaminación no està muy lejos de ser la que yo encontré en el verano de 1893. La falta de ícido nitroso sin embargo, $o ́$ su escasa proporción actual, demuestran que no es muy activa la descomposición de la materia orgánica y por consiguiente el oxigeno necesario para su oxidación no es tanto como para desoxidar el agua al punto de determinar la muerte de los peces.

El estudio propiamente químico de las aguas, sin embargo, a siemore bista para establecer con rigor su absoluth pureza. Un buen análisis, pues, at más de las anotaciones generales que nos sugiera su observación directa, debe también ir acompañado de un estudio bacteriológico minucioso.
«El anallisis bacteriólogico de las aguas, dicen Girard y Dupré, se ha hecho un complemento indispensable del examen químico, después que se ha senalado en las aguas potables la presencia de gérmenes patógenos.:

- La etiología de la liebre tifoidea, del cólera y de la disentera, para no hablar mas que de las afecciones cuyo medio de trasmisión por el agua está únicamente reconocido, ha hecho resaitar la imperiosa necesidad de no contentarse mas con el solo anàlisis quimico antes de pronunciarse respecto de la potabilidad de una agua. - Analyse des Matieres Alimentaires. Paris 1894.

A veces, sin embaryo, ni aún así, puede llegarse â resultados reaimente satisfactorios, pues no son pocos los casos en que no se ha podido comprobar le presencia de bacterios patógenos en aguas que sin embargo han sido la causa indudable de la infección.

En vista de estas dificultades se habia adoptado el sistema, muy cómodo y expeditivo por cierto, de calcular el número de colonias contenidas en un c. c. de agua. Pasando de ciertos límites en la cantidad de colonias encontradas, el agua era declarada malit. Mas estudios ulteriores han demostrado que muchas veces esos bacterios, contenidos normalmente en el agua, eran saprofitos, (1) micro-organismos que contribuyen á la autopurificación del mismo liquido. Por consiguiente su piesencia, lejos de ser temible, es benéfica.

Proskatuer indicaba como cantidad maxima de colonias tolerable la de 300 por c. c. Para Emmerich y Trillich la de 200 era ya sospechosa y hacfa necesatio un analisis cualitativo minucioso. Niquel en cambio admite cifias mucho más elevadas, proponiendo la siguiente clasificación:

```
Agua excesivamente pura de 0 a 10 bacterios por \(c^{3}\)
    ? muy pura . . . . . \(10^{\circ}=100\)
    - mediocre . . . \(=100=1000\)
    - impura. . . . . \(=1000 \times 10,000\)
    - muy impura . . . 100,900 para arriba
```

Por mi parte, en los análisis que he hecho de las aguas tomadas de las canillas de la provision de Buenos Aires he llegado á contar á menudo 700,800 y hasta 1000 y más colonias por c. c, á los ocho días de practicadas las siembras sobre gelatina. Esta citra ha llegado ai elevarse arriba de diez mil colonias cuando se ha demorado la siembra unas cuarenta y ocho horas de extritda el agua de las canillas, por mas que se le hubiera guardado en recipientes bien limpios, 10 cual prueba la poca importancia que puede atribuirse al método.

Se comprende de que yo no haya procedido it igual

[^11]analisis con las muestras recibidas del Paraguay, tomadas sin las minuciosas precauciones que el caso requiere y que tendrian, las que menos, más de quince dias de recogidas.

La verdadera importancia del examen bacteriológico consiste en la determinación de los gérmenes patógenos. Pero esto es it menudo diffícil de poder conseguir.

Reriere M. Trillich que acuando dominaba el cólera en la ciudad de Palermo (Italia), Buchner, Emmerich y Leone no pudieron encontrar los correspondientes vibriones en el agua potable, por mis que la investigación se llevara it cabo en todos los pozos de la ciudad.»

- Peor aun, añade, se encuentra la cuestión respecto de la pretendida constatación de los bacilos del tifus en las aguas del pozo. Hoy no es todavía posible el diagnosticar con completa seguridad la existencia de bacilos tiffogenos en el agua 6 en el suelo. Se pretende actualmente tomar los cultiros sobre papas como suficientes para formar un criterio seguro pata la identiticación de los bacilos del tifus, y si el bacilo encontrado en el agua se desarrolla sobre la papa del mismo modo que estos, se dice: He aqui probada la presencia del bacilus tiffico. Existen, sin embargo, normalmente bacterios en el agua y en el suelo que tanto en las placas de gelatina como en los cultivos por inticion, etc, presentan caracteres de desarrollo exatamente iguales a los del bacilus tirico. .
- Puesto que las experiencias sobre animales, tan demostrativa para otros géneros de bacterios patógenos, no pueden ser utilizadas para la identificación de los bacilos títicos, y puesto que las propiedades vegetativas de los bacterios sapróritos semejantes morfológicamente y biológicamente á los bacilos patógenos, no han sido aun suficientemente estudiados, por to tanto debe ponerse muy en duda la exactitud de la experiencia con que se ha asegurado haberse demostrado la presencia de estos bacilos en el agua de pozo, y no se puede deducir de las mismas apoyo alguno para provar la importancia del papel etiológico del agua potable. Emmerich y Karlinski, en ocasión de la aparición de un foco epidémico tifoso en Passan, en 1889 , procediendo al examen del agua sospechosa, vicron fallar todas las investigasiones llevadas a cabo para descubrir la presencia en la misma del bacilus del tifus..

Mas adelante agrega el mismo a ator: "Si blen es cierto que las aguas potables no producen infecciones (1) como resulta también de las experiencias epidemiolóqicas l'evadas af cabo en la India y en Europa, debe considerarse sin embargo una de las mayores necesidades higi nicas el poder disponer de aguat pura, puesto que todos los elementos destinados a la alimentación, tienen que ser puros y apetecibles y puesto que el agua pura, cuando se puede dispo. ner de ella en gran cantidad para todas los pisos de las casns, es un medio poderoso para tavorecer la limpieza general. »

A pesar de las opiniones de este sabio investigador: estan hoy contestes eu su mayoria los higienistas en atribuir la investigación de ciertas enfermedades infecciosas, como el cólerat. el tifus, la disenteria, ete, al uso de aguas contaminadas. (2) Asi como también se sabe desde hace mucho tiempo que la presencia ó proporción de algunas sales minerales convierten una agua en impropia para la alimentación.

Bajo el punto de vista químico, sus procedimientos analiticos son ahora tan exactos, que con seguridad puede clasificarse si una agea es ó no apta para el consumo. Puede à más revelarnos el analisis si la misma está ó no contaminada por residuos de la vida orgánica animal, lo cual es ya un gran paso en pro de la higiene, puesto que, desechada una agua asi declarada sospechosa, desaparece todo temor de infección.

[^12]sobre que debe destansats el juicio quo se ha de dar con respeoto it las aghas examinadas:

1. Relación entre las colonias fundentes y no fundeates la gelatina.
2. LT varictad de especies bactéricas.
3. La relación entre los gérmenes cromógenos y los no cromógenos.
4. La relación entre los eschizomicetos, blastomicetos c ifomicetos.
5. La distiacion eate baciloz, coccus y espirilos.
6. El estudio comparativo de las formas anacróbicas.
7. La identificación de las formas bactéricas principales.
8. Lit intrestighción de los becterios patógenos.

Otro dato que debe de tenerse en cuenta para el critetio con que se han de juzgar los resultados de los análisis, es el del examen quimico y bacteriológico de la tierra a traves de ta cenl filtra ó corre el agua.

EI antlisis quimico de ia tierra, una vez minuciosamente pructicado, no hay para qué volver sobre de đ1, porque su composición poco ó nada puede variar, salvo casos escepcionales. En un rio, por ejemplo, las crecientes y las bajantes tienen mís influencia sobre la composición de la misma agua, que sobre la composición de la tierra que forma el lecho del rio.

Bacteriológicamente, en cambio, la cuestión cambia de aspecto, pues en um misma corriente de agua, el número de bacterios y de especies en que ellos se dividen varia con mucha frecuencia, así como varian en la tierta á traV 's ó por encima de la cual corre. Es indispensable, por consigulente, el antilisis bacteriológico repetido de la tierra, para poder saber si las enpecies nuevas que se encuentran en el agua provienen de la misma tierra ó de una contaminación.

En 1900, el distinguido bacteriflogo francess Dr. Duclaux, contestando á una invitación de la autoridad militar del Havre, para que practicara los análisis bacterioiógicos del agua que tomaban los soldados de la guarnición, entre tos que se habfa desarrollado una epidemia de fiebre tif6i-
dea, escribia: - Yo cren que los analisis bacteriológicos del agua son ilusorios, cuando no están acompañados de un estudio minucioso del suelo y subsuelo de la región, y deploro y he deplorado siempre, que el estrdio de uni agua se practique unicimente en el laboratorio. (1)

Bajo el punto de vista quimico, yo he practicado varios de estos annulisis: entre ellos transeribo los siguientes:

La conoxición de talus estis aleras es miy fivorable, siendo sin embargo muy superior il todas las de pozo semisurgente. Por to que respecta it ta pequeña cantidad de materia orgínica existente en la atena de la costa, sobre

[^13]tol, en lit de ha cithla y que no existe en la del lecho del rio ni en la de pozo semi-surgente, se encuentra en su mayor parte al estado de luomus, indispensable para la fertilidad de los terrenos, y es ficil el explicar la catusa de su presencia.

En cuanto it la arcilla que forma las capas impermeables sobre que corren las aguas subterrineas del Paraguay, no the tenido oportunidad de analizarla. En cambio lo he hecho con varias muestras que me han sido proporcionadas por el Sr. Dante Courucci y el Sr. Villa, que si bien son superficiales, deben pertenecer a la misma formación de las que constituyen las capas mas 6 menos profundas que separan las diversas mapas de agua subterrainea.

	$\stackrel{8}{8}$	$\begin{gathered} \stackrel{8}{\stackrel{\circ}{\text { S. }}} . \end{gathered}$	$\underset{i}{3}$	$\begin{aligned} & \frac{8}{8} \\ & \stackrel{7}{币} \end{aligned}$	$\stackrel{8}{3}$	$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{y}{6} \end{aligned}$	$\stackrel{\rightharpoonup}{8}$	$\begin{aligned} & \text { 答 } \\ & \hline \end{aligned}$	串	$\begin{aligned} & \frac{n}{z} \\ & \frac{2}{3} \\ & \underset{\sim}{2} \end{aligned}$
	甬	$\underset{\substack{\text { IN }}}{ }$	$\begin{aligned} & \text { 㓬 } \\ & \substack{0 \\ \hline \\ \hline} \end{aligned}$	愚	$\stackrel{\rightharpoonup}{9}$	$\begin{aligned} & \text { 僉 } \\ & \text { 感 } \end{aligned}$		愚	$\begin{aligned} & \text { e } \\ & \text { 品 } \end{aligned}$	$\frac{8}{\frac{0}{3}}$
ynemisusozd velosapx	$\stackrel{\leftrightarrow}{9}$	$\stackrel{N}{8}$	$\begin{aligned} & \frac{\infty}{N} \\ & \frac{\pi}{4} \end{aligned}$	$\stackrel{8}{8}$	崗	$\stackrel{O}{0}$	$\frac{\stackrel{1}{7}}{5}$	$\begin{aligned} & \text { 草 } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \frac{0}{5} \end{aligned}$	$\stackrel{\rightharpoonup}{s}$
＊＊ 4xamsuond vхдмаม̆	$\frac{\otimes}{\underset{\alpha}{2}}$	$\frac{8}{2}$	$\begin{aligned} & \text { Pi } \\ & \stackrel{\text { P}}{8} \end{aligned}$		$\frac{\stackrel{x}{5}}{\underset{0}{y}}$	$\begin{gathered} \text { g̀n } \\ \text { B } \end{gathered}$		$\underset{\substack{8 \\ 8 \\ 0 \\ \hline}}{2}$	$\stackrel{\tilde{5}}{\stackrel{\circ}{8}}$	
	$\frac{\stackrel{\aleph}{6}}{16}$		$\begin{aligned} & \stackrel{18}{89} \\ & \stackrel{8}{7} \end{aligned}$	$\underset{\substack{8 \\ \text { in }}}{5}$	$\underset{\substack{\text { P } \\ 0 \\ 0}}{ }$	$\stackrel{P}{巳 巳}$	$\stackrel{\text { B }}{8}$	$\begin{aligned} & \text { 跑 } \\ & \hline \end{aligned}$	$\begin{aligned} & \sqrt{0} \\ & = \end{aligned}$	$\stackrel{0}{3}$
	©	$\begin{aligned} & 8 \\ & \substack{8 \\ 80} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 發 } \\ & \text { ¢ } \end{aligned}$		$\begin{aligned} & \text { o } \\ & \text { io } \\ & \text { oi } \end{aligned}$		$\frac{\infty}{\frac{\infty}{2}}$	$\begin{aligned} & \text { W} \\ & \text { W} \\ & \text { On } \end{aligned}$		$\stackrel{8}{\square}$
		5 0 0 0 0 8 8	$\begin{aligned} & \frac{8}{2} \\ & \frac{0}{n} \\ & \frac{0}{2} \\ & \frac{2}{5} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{3} \\ & \frac{1}{3} \\ & \frac{8}{1} \\ & \frac{0}{6} \end{aligned}$	\overbrace{E}^{E}	Oxido de calcio	$\begin{aligned} & \frac{0}{0} \\ & \frac{1}{5} \\ & \frac{1}{\tilde{E}} \end{aligned}$	$\begin{aligned} & \frac{8}{3} \\ & \frac{3}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{2}{3} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & \frac{5}{5} \\ & \frac{4}{6} \\ & 0 \\ & \frac{3}{E} \\ & \frac{3}{3} \end{aligned}$

Estos análisis nada ofrecen de partiuclar it no sert laproporción un poco elevada de fierro que revelan las muestras provenientes de Villeta, pues es sabido que las aguas ferruginosas favorecenel desartollo del eremalthryx kithina na cuya presencia imposibilita el empten de canos y recipientes de fierro, to cual impide que las aguas que lo contieuen puedan ser utilizadas para la provisión pública, a parte de que su desartolto farorece indirectamente ef de otras especies que pueden convertir en impotable ei agua.

En Berlín, Pisa, Lille, Rotterdam y en Bamberg, debido al crenothrix, tuvo que renovarse la mayor parte de tas cañerias, é igual cosa sucedió en Corneto Tarquinin, Campagnático, Carpagnana, y otras muchas localidades. Estos perjuicios han sido de tanta inportancia que el chemalloxx ha merecido los calificativos de: *calamidad del agua (Zopi) - peste de los catios de conducción. (De Vries), flagelo del agua (Ziard).

Muy afin at begsiatoa kimiana es ta gallionella firruginea, estudiada por Pellegrini.

La invasión de estos gérmenes, no solamente, como he dicho, deterioran las canertas, at menudo hasta obstruirlis, sino que forman depósitos mucilmginosos, que ađquieren it veces un olor nauseabundo y que, por la muerte de estos ferrobacterios, que concluyen por infestar el agua.

Por suerte, las aguas de pozo semi-surgente de lia Asunción, por la insignificante cantidad de hierro que contienen, estan al abrigo de estos inconvenientes.

De todo 10 que acabo de exponer en este sucinto tribaijo, se vé que nuestra Capital, tanto por el agua de su ciudalaso rio cuanto por el de sus napas semi-surgentes, está escep cionalmente dotada, pues cada una de ellas, en su categoria;: puede compararse vencajosamente con las mejores del mundo.

Presento, para terminar, el siguiente cuadro analrico comparativo de algunas aguas de consumo de diversas localidades.

PROVRNIENCLA	ramen	\ldots		**..		L...	*x***	nr.	**.			Lnem	a,toran.					\dot{m}				
Doics tew) (velin stomear)	Homm	usam	vese	tsate	ar	net	200	5 sm	4×0	14.00	*mom	270	28	17	33	เ\%	ca	30	Hase	แง	23	29
	र.ay	2***	kam	naez	waw	act	14 Em	uswe		ause	上*:	wion	ตакะ	698	Lem	isvox	$4 \geqslant 0$	Ars	4030	๘๐.	cump	2000
Onile ch otels	luses	ит**	vese	Save	am	\%	1 mam	Uxo	-	181500	2500	2000	200	1780	2000	zamm	6xa		най	нам	B1en	scom
- aususe	ane	enst	12a*	ase	6anct	*nm	2005	2000	um	noma	3ง\%	нто	өaza	aves	evatan	exal	2 zam	2,a	4 tm	แ17	-3man	139,
- mome	temis		um	vens	Eiva	1480	-	เร\%	2-4	axue	a**	гам4	1 mm	aus	1704	Lmm	2634	230.	Lsar	2na	¢smp	н330
prow	csen	*us	cover	* 5	*s0\%	*00	-	asa	ans	มu**	ames	Ono	oome	anes	asoree	* 3 3	um	\pm	Num	мхя	464	asma
- Emxor seaneio	user	nume	น	Litn	*som	1×0	20×0	eaxe	-	*	1,nom	230	12×0	exam	*weres	kurtas	Una		Lem	งwe		
Aelitints allow	Texs	sim	vse	2981	2 smom	Lsan	ax\%	torm	-	39	4×0	2me	t towa	Exa	emom	418	*ater		ven	\% 4 m		
Alibl eithiov abile.	1000	Sima	smu	40\%	amor	ars	1300	arm	aven	asas	tun	1380	1200	exin	c. 20	+1000	2tam	crepe	20.07	ivem	2amm	reast
- marno	timen	nux	sone	Sve	nom	2306	asom	aniz	usam	мat:	ames	asat	wems	neis	evas	tns	Niou	\cdots	Nuan	Weas	aихи	vism
Cum	135	***	nowis	ven	-3an	nown	nom	arem	asat	2.	teris	20in	1738	cass	2 20	2 min	บทa	2.05	toor	Lame	nom	savel
Ondere	sxum	mame	4omos	maxam	mumen	muxas		,	10xom	-	mass	toma	same	smase	-	.				-	-	
atom	\%sxe		nur	นยхะ	seaner	тиma	-				ทยบบา		пгопи	numae	-	-					-	
Aelitis eutiche	-1000	IExam	\%xam	mam	nusam	บ上,					kram	mave	nuoma	meare								

INDICE

11 - Metedos 1 mat eleritigar a puritigar et agua

 teres gernctales for Jos datio del anallivequimbor ? hactartalefico:

Pay 3
(3) 18

[^0]: (1) Es tal sin embargo, la extensión yue con rapidex va adqui iendo Bucrios Alice цne una buena parte de ella queda sa fuera del radio benelicfado por tas obras de salubridad, to cual no tardaní por desgracia en dar sus malas consecuenclas.

[^1]: (i) En las antiquisimas ciudades de Assur y Ninive el agua se trafa ya desde lejos por medio de acueductos. Jerasalem, desele eT relando de Satomón hacia venir of agua de una distancia como de veine leguas, Los romanos proveian de ella a sus ciudadea y if las que conquistaban, trayéntola a meriudo desde muy lejos, por enciua de blen calculi-

[^2]: dos acucductos, muchor de lobecuales extsten abin athota en perfeta osadu do conservación : Babilonta, la mas antigaa de las guandes ciudadea conocidas, causa asombro por sa diferibu-

[^3]: 1) En vatios suticulos publicados en Buense Atres y en los qAnales de lat Unfivenidad Nacienal he infciado la conveniencla de aceptar una cifra limite también para el deido
 mante que esa pequeciar cantidad de ácido nitreso, cuando los demás dator del andilitis no concurren if demostrar una posible contaminación, es debida al la reduccion de los nieratok por el óxido ferrose de las mianìs cabiecias de las bozibas y de los depcritos. Trabajos posterimes me ham corivencto, yue esta cifra limie puede levarse in temor atguno has ta 6 miligramos por cien lirus, y ha memorta que presenté en este sentido al Sekundo Conसreon Medfor I atino-Americang en Buenos Airos el aña pa ado mereció au aprobación.

 Eatà memoria ba sido publicaila en el Toma V pier 305 de las adias y. Trandos del Segundó Congresn Méteo Latino-Americano 1904; en la Reveta Mageverologea in if y

[^4]: 1) Analikis practicados en mii aboratorio partleutar en Mairzo de t:801.
[^5]: (1) "Criterio para juzgar las aguas potables." Mor ol Dr. Pedro N. Aruza, Buctose Aices 1801.

[^6]: (1) EI distinguido fixico holandes Tyndall ha heeho pasar aire electrizado mediante

[^7]: complctamente estérif el Rgast y al masmo tiempo tramsparente. EI Dr. Roux en 1895 putconizo del mismo modo la maradercítr del agas pars exterilatrin, por mis contaminada que esté, y trankformaria asi on agud potable.

[^8]: (1) Fraenkel, del Instituto Higlénico de Berlin, considera perfectathente suficionte la reacción de cunivo sobre la papa, stempre que el conjunto de los caracteres morfologlicas , biologfous concuerden con clla. Del mismo modo piensan Chantemesse y Widal on Francla, En cambio Kowalski, Fodor, Emmerich, Trillich y otros no acepian este reacrivo comn decisiva. Miquel en el nümero de los Anales del Observatorio de Montsourf correspondente at año de 1838 dice lo siguiente - Conozco por mi parte tres especies de bacilas alslados do las aguas, del aire y del barro de Paris, cuya somejanza con el bacitus del tifus es perfecta, y cuyo culdía sobre la gelatina, la papa. las inoculaciones producet resultados absefutamen e sema janica,b Según Miquel, pues, que es una verdadera autoridad en la nlaterian his mismas inocalacianzs us constituyen un reactivo sufictente para poder asegurar ia preancia del bacilas de Eberth. En contra de este excepticiamo, Bormaus, que ha estadiado recientemente todas las reacciones de cultivo con que los diverses autores hat creida poder atirmar la identificacion de este micro-arganismo, llega a la conciusion de yté es pertectamente posible el identificarlo sabiendo asociar debidamente diehos métodos. Respecto del cultivo sobre papas, lo cree deticiente y dice que él mismo (Rivista dIgiene ÉSanita Pühlica 1902) alsto de los Tfyutios de un feto expulsado por unt tifoidea un baWitar t/fors, to cultive sobre papa y observó que se comportaba de una manera idéntica at

[^9]: (3) Ef HL Congresn Argontino, on vibli de Ia contauitacton manifonta de algunos por 204 semifurgentes do la Caplat, mrelada por numerosas anilisis practicadon por la Ofi-

[^10]: (1) Machameara, en 30 actava comunicactón sobre las hzats potables de Bentala, cita ia diarrea do Dharm ale comp producida por finisimas uncamas de miter iouppendiaas en el rigua helida.

[^11]: (1) Sapros' podrido: Phitox: vegetal-Esquizomicmas bactetiaceas con escasa fiotción de elorófica, que no pacden sostenerse con la cantidad exigua de materia organila formada por lit asimilación lenta y que por to mismo necesitan flimento organico, apoderandose del que encuencran a su derredor, yia bajo la forma de materia orgán/ea dlsuelta \& en suspensión en las aguas, ya do los mismos bareterios de otras especies que llegan if su aicance Estos micro-arganismos, pues, que se encuentran en un medio que es es proplo destruyen aos que accidentalmente finaden su dominio, apoderandose de la inateria organiea que los alimentay do la misma que los constituye. Por eso es alficil y poco duradera fa vida de los hacterios patogenos en uma agua de mediamas condicfores de potabilidad.

[^12]: (1) Esta afimación es indudablemente demasiado categonca y esta invalidafa par numerosas observacioncs epidemiologens Quo no pu-ian catacterizarse in meady ze:menes patógenos en una agua, cuando los que la beben se enferman de tal δ cual enfermedad infecciosa, no quitre dectr que no existan, si no que Las dificulades de que csta erizada esta clase de trabajos no han permitido su constataclor Agrega el mismo Dr Triltch que π Los vibriones del colera, aunque se slembent en las pozos en cantidades colosales, deapués de 24 horas desaparecen, es declf mucren. Ninguaa especie patógena de bacterios es capaz to moltiplicarte en el agua y al contrario todis perecen mas o menos promto. Habria que ver la naturalezt del agua en que se han efeatuado estas siembras, por que si cl agua es may pura es facil comprender yue no pucien prosperar en ella estos merobios. aunque también puede suponerse que no se hayan encontrado a pesar de existir, paesto qुue es sabido que estos análisis se practican solore pequemisimas cantlitudes de Hf . puido.
 (2) E1 sexto Congreso Internacional de Viena volvió á atirmar ea septiembre de 185\%, el hecio de lat transmisibilidad de certas entermedades por el agua con entas palabras: \& Habténdose probado la posioilidad de la propagacion de las enfermedades infeeciosas por modio del agua potable conluminada umi de las más importanter presexipeiones de higiene publiea debe ser la de proveor de agaa absolulamente pura it lay poblaciones

[^13]: (1) Esta carti fuí pablicada en la revista Noksintrus Meptcata con techa ib du Mityo de 1900

